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a reprint from Applied Optics

Angular intensity correlations in the double
passage of waves through a random phase screen

Héctor M. Escamilla, Eugenio R. Méndez, and David F. Hotz

The problem of light scattering in folded-path or double-passage configurations is studied theoretically.
Assuming as the random medium a deep phase screen that introduces Gauscian distributed phase
fluctuations, we study the motion of the speckle as the source is moved. Some attention is also given to
the phenomenon of backscattering enhancement. Our analysis is based on a novel expression for the
complex amplitude that has a simple physical interpretation. For simplicity, only the one-dimensional
case is considered, but an extension of the analysis to two-dimensional screens is not difficult.

Using the factorization properties of the moments of a complex Gaussian process, we are able to derive
analytical expressions for the mean intensity and the intensity correlation of the backscattered
radiation. We find that, in most cases, the speckle field decorrelates rapidly as one moves the angle of
incidence and shifts toward the direction of specular reflection with a rate of motion that is different from

that of the angle of incidence. We also find conditions under which, when the angle of incidence is

modified, the speckle pattern produced in the region of observation tracks the backscattering direction.

Key words:
random phase screen.

1. Introduction

The problem of light scattering in folded-path or
double-passage configurations has been studied in the
last three decades by several authors.!- The system
is known to exhibit the phenomenon of backscatter-
ing enhancement. This phenomenon can be ex-
plained by considering the coherent addition of waves
that follow identical paths in opposite directions on
interaction with the random medium. Most of these
studies have dealt with the propagation through an
extended random medium, and Ref. 6 provides sev-
eral references for this case. More recently, the
scattering system consisting of a plane mirror in the
diffraction field of a deep random phase screen has
also been studied by several authors.*57-1° To our
knowledge, however, only the mean intensity and the
first-order spatial coherence function of the scattered
light have been studied.

In this paper we study theoretically the deep phase
screen double-passage configuration [see Fig. 1(a)]
with particular interest in the correlation of the
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intensity fluctuations that describes the motion of the
speckle as the source is moved, but some attention is
also given to the angular distribution of the mean
intensity around the backscattering direction. Our
analysis is based on an expression for the scattered
complex amplitude that can be obtained by manipulat-
ing the diffraction integrals that describe the propaga-
tion to the observation point. Assuming that a
Gaussian speckle pattern!! is formed in the plane of
the mirror and that the speckle grain on the mirror is
much smaller than the mirror aperture, we derive
exact (within the model) analytical expressions for
the mean intensity and the intensity correlation of
the backscattered radiation by using the factorization
properties of the moments of a complex Gaussian
process. In this paper we deal with a one-dimen-
sional random phase screen that introduces smoothly
varying Gaussian-distributed phase fluctuations, but
the calculations can be easily extended to the case of
two-dimensional phase screens.

We find that, under certain circumstances, when
the angle of incidence is modified, the speckle pattern
produced in the region of observation tracks the
backscattering direction. This is in contrast with
the well-known laws of speckle motion with random
surfaces!*13 and with the type of motion found for
volume scatterers.!4!7 Another interesting feature
present in our calculations is that, in some cases, the




phase screen phase screen

>
>
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Fig. 1. Scattering geometry: (a) backscattering configuration,
(b) equivalent unfolded geometry with two identical screens.

speckle pattern is nearly symmetric about the back-
scattering direction.

Using these results, we propose a modification of
the original scattering geometry. With this new
configuration, the backscattering enhancement, the
symmetry of the speckle pattern, and the tracking of
the speckle pattern of the backscattering direction
are present under less restrictive conditions.

2. Formulation of the Problem

The double-passage configuration is shown in Fig.
1(a). A plane mirror lies in the Fresnel region of the
phase screen. Finite apertures are located in the
plane of the mirror and of the screen. The angles of
incidence 6; and of scattering 6, are taken as positive
in the sense indicated by the arrows in the figure.
It is clear that the unfolded geometry of Fig. 1(b) is
equivalent to that shown in Fig. 1(a). The aperture
W, refers to the width of the incoming beam.

A. Scattered Complex Amplitude

With reference to Fig. 1(b), we see that a nearly
collimated monochromatic Gaussian beam of 1/e
amplitude radius W, is incident upon the first phase
screen, which is located on the plane x;, at an angle ¢;
with respect to the z axis. This incident complex
amplitude A,(x,) may we written as

2
A(x;) = K, exp(—tkx; sin Oi)exp(— x_) v (1)

where K, is a complex constant and k£ = 2n/\, A being
the wavelength of the incident light. The complex
amplitude of the scattered light in the plane of the
mirror, which is denoted by A(x, 6;), can be found by
using the Kirchhoff diffraction theory in the Fresnel

approximation. We have
A(x, 8,)
) : tk .
=K, f A(x,)exp|idix,)lexp 2g' %1~ xP|dx;, (2)

where ¢(x,) is the random phase introduced by the
screen, d is the distance from the screen to the

mirror, and K, is another complex constant. The
aperture function in the mirror plane is given by
x2
Tyl x) = exp| — W ) (3)

where W, is the aperture radius at the 1.e point.
The complex amplitude A(x,), which is incident upon
the second phase screen located in the plane x,, can be
written as

ik

2—(x2 —x)?|dx, (4)

A(xz) = K2 f A(x, Oi)To(x)exp

where K, is a complex constant, and we have again
made use of the Fresnel approximation. At an obser-
vation point in the far field of the second screen, the
scattered complex amplitude can be written as

% 2
A(eiv es) = KJ. A(xZ)exp(_ %)
-x 2

X explidlxy)lexp( —ikx, sin 0,)dx,, (5)

where 0, denotes the direction of observation and K is
another complex constant; we have included a Gaus-
sian aperture function of radius W, in the plane of the
second screen. From Egs. (3)-(5) we may write,
after interchanging the orders of integration,

2

A, es)=Kf exp(— x—)A(x,B,)A(x, 0.)dx, (6)

W2
where
* xo? .
Alx,8,) =K, | exp|-— W2 explid(x,)]
- Y2
ik ) .
X exp 2_d(x2 —x)? lexp(—ikx,sin ,)dx,.  (7)

The quantity A(x, 0,) is the complex amplitude that
a point source located at the observation point in the
far field would produce in the plane of the mirror.
Substitution of Eq. (1) into Eq. (2) shows that, except
for an irrelevant constant factor, Egs. (2) and (7) have
exactly the same form. Our approach is based on
Eq. (6) and a few additional assumptions that are
described in Subsection 2.B. Equation (6) has a
simple physical interpretation: mathematically it is
the product of two speckle patterns integrated over
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the mirror aperture. This expression has some close
parallels with the equation describing image forma-
tion in confocal scanning microscopy.'®

B. Correlation of the Scattered Intensity

At this point it is necessary to introduce a statistical
model for the phase fluctuations &(x). We assume
that &(x) is a stationary zero-mean Gaussian random
process with a Gaussian correlation coefficient

plx = x');
’ )2
(blx)olx)) exp(_ x — x| ) ®)

p(x—x')=T £

where o2 is the variance of the random phase fluctua-
tions and £ is the characteristic correlaton length of
the process.

Now, for a deep phase screen, o2 > 1, and if, in
addition, W2 > §2 and (k£2/2d) < 1, then the
complex amplitude A(x, 6;) corresponds to that of a
fully developed speckle pattern.#!! That is, A(x, 6;)
is a zero-mean circular complex Gaussian random
variable (CCGRV).!! The condition (k£2/2d) < 1
ensures that the mirror is far from the focusing
region of the screen where strong departures from
Gaussian statistics take place.!® Likewise, if W,2 >
£2 A(x, 0,) is also a zero-mean CCGRV. In addition,
if W,, is much greater than the speckle size in the
plane of the mirror, the scattered complex amplitude
A(8;, 8,) is also a zero-mean CCGRV.

Consider now the intensity I(9;, 6,) at detection
angle 6,, which is due to an incoming beam incident at
angle 9;, and the intensity I(6;’, 8,’) at detection angle
0,', which is due to an incoming beam at incident
angle 8;'. With the statements made above regard-
ing the statistics of A(6;, 8,), the intensity correlation
Ci(8;, 8,; 8, 0,") = (I(6;,0,)I(6,", 8,")) can be written
as?0:

(8, 6,;8,,8,)
= (1(8;, 0,)11(8, 8,)) + | C4(6;, B;; 8, )%, (9)
where
C.(8;, 8, 0,',0,") = (A(8;, 6,)A*(8,", 8,')). (10)

Using Eq. (6), we see that the problem reduces to the
calculation of the function:

CA(ei’ es; 9,", 8 ’)

e[ [ ool

x (A(x,0;,)A(x,6,)A*(x’, 0, )A"‘(x 0, ))dxdx’.

x2+x' \)

(11)

Recalling again the statistical considerations made
above, we also find that the fourth-order moment in
the integrand of Eq. (11) can be expressed as a sum of
products of first-order correlation functions.?? Thus
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we can write
Cal0,,0,,08.,0,')=C,(6,,6,,8,',0,)+ Cy6,,6,;0,,8,"),
(12)
where
C\(8,,0,;8,',8,")

e[ [ ool

x+x

)(A(xv ei)A*(x, ’ ei, ))

X {Alx, 0,)A*(x’', 8, ))dxdx’, (13)
and
C (eues:et ’e
x2+x?
|Ki2f f exp( )(A(x,ei)A'(x',es'))
X (A(x, JA¥(x', 8, )dxdx', (14)

The last two expressions involve only the calcula-
tion of second-order moments or correlations of the
field amplitude, and are much simpler to calculate
than the fourth-order moment of Eq. (11). The
amplitude correlations in Egs. (13) and (14) were
evaluated in the limit ¢® > 1 by using a steepest-
descents method (see Appendix A). Using these
results, we can obtain analytical expressions for
Ci(8;, 8; 8;', 8,') and Cy(8;, 6,; 8,', 8,") without further
approximations. The result involves some rather
long algebraic expressions that are difficult to reduce
and thus are given in Appendix A. A simple formula
for a particular case is given in Section 3.

The mean intensity is then calculated from

<I(eiv 03» = CA(Gis 93; 8,-, 93);

while the normalized intensity correlation +v(8,, 8,;
9;', 8,') is given by

(15)

‘Yi(ei) 03; ei’1 es') = 1 + I‘YA(Bh es; 9,", 93,)'2
ICA(eb as; ei'rear,),2 A
CA(ei’ es; eh es)CA(ei', es'; ei’: 981)
(16)

=1+

It is pertinent to mention that, recently, a compact
formula for the mean intensity produced by the
scattering of a Gaussian beam by the double passage
through a deep phase screen has been derived that
also uses the factorization properties of the moments
of a Gaussian random process.!?

3. Results

We now turn our attention to the studv of the
behavior of the angular distribution of the mean
intensity around the backscattering direction. Fig-
ure 2 shows the evolution of the enhancement factor
E; as the distance d from the phase screen to the




Enhancement Factor

0.0

0 5 10 15
d/L
Fig. 2. Enhancement factor E as a function of the normalized
distance d. L between the mirror and the phase screen. For the
numerical calculations W, and W,,, were assumed to be infinite, L =
6.206 mm (see text) and 6, = 5 mrad.

mirror increases for the case of infinite apertures at
the mirror and the second screen. We define the
enhancement factor E; as the ratio of the mean
intensity in the backscattering direction to the mean
background intensity. In Fig. 2, the circles repre-
sent the values obtained from the evaluation of the
general formulas given in Appendix A, while the solid
curve is a plot of the expression

1
et e o
where the normalization distance L is given by
kEW,
b= 18)

For the numerical calculations presented we have set
A=0.6328 pom,o0 =8rad, £ = 50 um, and W, = 2
mm. So the parameter L was fixed at the value L =
6.206 mm. Equation (17) can be derived from the
results given in Ref. 4. The agreement between the
two plots is excellent. It is seen that the height of
the peak diminishes as the screen to the mirror
distance increases. This is because, as this distance
increases, more of the scattered light reflected by the
mirror onto the screen lies outside the region illumi-
nated in the first passage. It is only the region of
overlap that contributes to the backscattering en-
hancement. The light reflected outside this region
contributes to only the background scattered intensity.

The relative enhancement can also be increased by
reducing the area of the screen illuminated in the
second passage by placing a physical aperture at
either the mirror or at the screen. This is illustrated
in Fig. 3 for a normalized distance d/L = 6.5, for
which expression (17) predicts a small enhancement
(see Fig. 2). In Fig. 3(a) the aperture radius of the
mirror has been set to one half of the radius of the
incoming Gaussian beam. A high value is obtained

2.0 Y

(a)

15 - -

1.0

o5t : ]

Intensity (arb. units)

Scattering Angle (mrad)

2.0

isf (P)

1.0

05 F

Intensity (arb. units)

I o)

0.0

0 5 10
Scattering Angle (mrad)

Fig. 3. Angular distribution of mean intensity as a function of the
scattering angle 8, for the cases of reduced apertures at the mirror
or phase screen. The dots indicate the direction of incidence 8, = 5
mrad. Hered =6.5L and(a) W,, = W, .2 and W, infinite, th) W, =
W, and W,, infinite.

for the relative enhancement because, after reflec-
tion, the illuminated region of the second screen
almost coincides with the area illuminated in the first
passage. Figure 3(b), on the other hand, shows that
the maximum theoretical enhancement factor of 2
(see Refs. 21-23) is achieved when the apertures at
the two screens have equal sizes, as this maximizes
the proportion of reversible paths. The mirror, in
this case, has been assumed to be infinite.

In Fig. 4 we study the motion of the speckle pattern
as the direction of the incoming beam changes. We
proceed by first fixing the original angles of incidence
0; and detection 8,. We then choose a new angle of
incidence 9, and find the maximum value of the
correlation v,(9;, 0,; 8,", 8,') as we scan the second
angle of observation 6,’. In these figures, the verti-
cal dashed—dotted line indicates the original direction
of observation 8, while the dotted line indicates the
original direction of incidence 6,. Figure 4(a) is a plot
of the maximum value of the intensity correlation

20 May 1993 / Vol. 32, No. 15 / APPLIED OPTICS 2737
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Fig. 4. Envelopes of the intensity correlation functions. The
dashed-dotted vertical line in (a) indicates the original direction of
observation, while the dotted line in (b) indicates the original
direction of incidence. Hered = 6.5 L, W, = W,, W,, is infinite,
8, = 0 mrad and 0, = —1 mrad. {(a) Maximum values of the
intensity correlation function as a function of the scattering angle
8,’, (b) maximum values of the intensity correlation function as a
function of the angle of incidence 8," (circles) and angular distribu-
tion of mean intensity with 8," = 0 mrad as a function of the angle
of incidence 8, (solid curve).

function as a function of the angle of observation 8,’
at which the maximum occurs for each new angle of
incidence 9,’; the curve represents, then, the intensity
correlation envelope. It should be pointed out, how-
ever, that, in general, the ratio of the angular shift of
the speckle pattern to the angular shift in the angle of
incidence is not equal to 1. This ratio depends on the
geometry and, in particular, it depends on the dis-
tance d. To illustrate the fact that the speckle does
not move at the same rate as the angle of incidence,
we show in Fig. 4(b) a plot of the correlation envelope
shown in Fig. 4(a) in terms of the direction of
incidence 0,'. The correlation envelope shown in
Fig. 4(b) then represents (for given angles 6;, 9,, and
8,') the maximum correlation obtained by scanning

2738 APPLIED OPTICS / Vol. 32, No. 15 / 20 May 1993

the angle of scattering 8," plotted as a function of the
angle of incidence 9,". It can be seen from Fig. 4(a)
that, for the distance d = 6.5 L employed in the
figure, the full width of the correlation envelope, as a
function of the scattering angle 8,’, equals approxi-
mately 2 urad. This width corresponds to an inter-
val of angles of incidence 0, of approximately 3 mrad,
as can be seen from the curve plotted in Fig. 4(b).
This indicates that, in the situation considered, the
speckle pattern is practically static, and decorrelates
as the angle of incidence is changed. The solid curve
in Fig. 4(b) represents the mean intensity for 6," = 0
mrad (which corresponds to the original angle of
incidence 0,) plotted as a function of the angle of
incidence 6,". Invoking reciprocity arguments we
can see that the same curve would be obtained by
setting 6, = 0 mrad and plotting (I(0,, 8,)) as a function
of 8,. The solid curve in Fig. 4(b) represents, then,
the backscattering enhancement peak, and it is re-
markable that the two curves plotted in this figure
are practically the same. A similar result holds for
scattering from dense media, where it has been
shown that the shape of the envelope ot the correla-
tion is equal to the square of the backscattering
enhancement peak.?* We also mention that the situ-
ation shown in Fig. 4(b) does not always hold. For
instance, if the mirror is moved closer to the phase
screen, one eventually reaches a point beyond which
the shape of the envelope correlation and that of the
backscattering peak are different.

Figure 5 shows two aspects of the behavior of the
intensity correlation function as the direction of
incidence changes from 9;t0 6,". The geometry of the
arrangement is the same as in Fig. 4, but we have now
set the distance d = 0.8 L. Also, as in Fig. 4, the
vertical dashed—dotted line in the upper half of these
figures indicates the original direction of observation
8,, while the dotted lines indicate the original direc-
tion of incidence 8;. The long-dashed vertical lines in
the bottom halves of the figures indicate the new
direction of incidence 6,’. while the solid-vertical lines
indicate the new direction of observation 6,' for which
maximum correlation is achieved. In Fig. 5(a), the
thick solid curve corresponds to the intensity correla-
tion function, while the thin curve shows the enve-
lope of the intensity correlation function. For the
value of d/L employed in Fig. 5(a), the envelope is
much wider than that in Fig. 4{a). We also see from
Fig. 5(a) that, as the direction of incidence changes
from 6; = 0.0 mrad to 6," = 0.15 mrad, the peak of the
intensity correlation function, and thus the speckle
pattern, moves in the direction of the specular reflec-
tion from the original angle of observation 6, = —1
mrad to the position 8," = —1.04 mrad. In Fig. 5(b),
the original directions of incidence and observation
are, respectively, 6; = 0.0 mrad and 8, = —1.0 mrad.
It can be seen that, when the new direction of
incidence 6, coincides with the original direction of
observation 0,, the peak of the intensity correlation
function appears at the original direction of incidence
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Fig. 5. Shift of the intensity correlation peak with a change in the
angle of incidence. The abscissas correspond to the scattering
angle 6,'. The dashed—dotted vertical line indicates the original
direction of observation, while the dots indicate the original
direction of incidence. The long-dashed vertical line indicates the
new direction of incidence while the solid vertical line indicates the
angle of observation for which maximum correlation occurs.
Hered = 0.8 L, W, = W,, W, is infinite, 6, = 0 mrad, and 8, = —1
mrad. (a) Intensity correlation function for 6, = 0.15 mrad (thick
curve! and envelope of the intensity correlation function (thin
curve). The maximum correlation occurs at 9, = ~1.04 mrad.
(b) Intensity correlation function for 9, = 6,.

6;. So, when source and detector are interchanged,
the corresponding intensities are perfectly correlated.
This result shows that the fcrmulas derived in Appen-
dix A obey reciprocity. This kind of correlation was
recently discussed for volume scatterers and has been
termed the ‘‘time-reversed memory effect.””1?

In Fig. 6 we consider the case of a small aperture at
the mirror, much smaller than the cross section of the
incoming beam. For these figures we assumed an
infinitely large aperture at the second screen. Fig-
ure 6(a) shows the spatial intensity autocorrelation
function. It can be seen that the speckle pattern is
nearly symmetrical with respect to the backscattering

2.0 T
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15}
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Intensity Correlation
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1.0
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Fig. 6. Intensity correlation functions as functions of the scatter-
ing angle 6,’ for a small mirror aperture. The vertical lines have
the same meaning asin Fig. 5. Hered =L, W, = 0.025 W,, W, is
infinite, 8; = 0 mrad, and 8, = —1 mrad. (a) Intensity correlation
for 8, = 0, (spatial autocorrelation), (b) intensity correlation
function for 6, = 1.0 mrad.

direction. This is because [with reference to Fig.
1(b)] the light scattered from the first screen that
reaches the second screen goes through a small
aperture on the axis of the system so that an inverted
image of the area illuminated on the first screen is
projected onto the second. Figure 6(b) shows that
when the incident direction changes from 6, = 0 to
0;' = 1 mrad, the correlation peaks move in a direc-
tion opposite to that of the specular direction and at
the same rate as the incident direction. That is, in
this case, the speckle pattern tracks the backscatter-
ing direction.

These striking results are due to the fact that, for
the complex amplitudes A(x, 6;) and A(x, 6,) [see Eq.
(6)], the phase curvatures within the mirror aperture
are negligible. This suggests a modification of the
scattering geometery that will produce these effects
under less restrictive conditions. The new geometry
isshownin Fig. 7. The simple formula referred to in
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phase screen

Fig. 7. Double-passage configuration with the phase screen at the
center of curvature of a spherical mirror.

Subsection 2.B was derived for the case W, = W, = W
and for this specialized geometry, including a spheri-
cal mirror, with an aperture of radius W,,, situated in
the far field of the screen. The radius of curvature of
the mirror is d and is equal to the distance from the
screen to the mirror.

It is found that up to a constant factor, the
amplitude correlation is given by the expression

‘YA(BI:! es; eily esl)
1(8,* +0°2 1(8” +86,7)
e 8 (Pm2 + ‘pez 8 "sz

[ [ 1(6, - 8,2 1(87 - 0;)2}
X texp|— g -7

8 2

S
6
L)

1 (9,'_ - 93—)2 1 (91+ - 93+)2 19
THPITE er 4 g '+ (19)
where
9,* =sin §, + sin 6;’, (20)
0, = sin 6; — sin §;’, (21)
0,* =sin 6, + sin 6,’, (22)
8, = sin 6, — sin 6,’, (23)
2
®s = T (24)
20 95
Y. = k§ ’ ( )
W,
Om = _d— . (26)

These last three quantities represent, respectively,
the angular widths of the speckle, of the speckle
envelope, and of the mirror. To derive expression
(19) we assumed that ¢,, ¢, > ¢,.

Also, it is straightforward to show that, with
approximations consistent with those employed in
the derivation of Eq. (19), the mean intensity pre-
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dicted by this equation is given by
1
20,2

+ (sin 6, — sin 8,)?

@t

(I(8,, 8,)) = exp - (sin 6, + sin 6,)?

@2+ on

(sin'@, — sin 8,}?

@’

x i1 + exp

]- (27

which predicts a broad envelope with a narrow peak
(width ¢,) in the backscattering direction (6, = 6,).
Figure 8 corresponds to the geometry depicted in
Fig. 7, in which the phase screen is at the center of
curvature of the spherical mirror. Figure 8(a) shows
the behavior of the mean intensity. It is seen that
the relative value of the backscattering enhancement
reaches a value of 2. The reason for this is that, in
the present case, an image of the region of the screen
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Fig. 8. Mean intensity and intensity correlation for the geometry
shown in Fig. 7. The vertical lines have the same meaning as in
Fig. 5. Therelevant parametersared =80.0L, W, =5W, W,is
infinite, and §; = 5 mrad. (a) Angular distribution of mean
intensity as a function of 8,, (b) intensity correlation plotted as a
function of the scattering angle 8,’, with 0, = 2 mrad and 8, = 6
mrad.




illuminated by the incoming beam is formed on the
screen by the mirror. This image is inverted and is
of unit magnification. The intensity correlation func-
tion in Fig. 8(b) shows the same features ob.erved in
Fig. 6. The autocorrelation function shows two
peaks, indicating the symmetry of the speckie pattern
. ith respect to the backscattering direction. Also,
as the angle of incidence of the incoming beam is
changed, the speckle pattern tracks the backscatter-
ing direction and not the specular direction, as would
be the case with a single-scattering rough surface.
These features can be explained from Eq. (19): The
term (6, — 6,7) in this equation is the one responsible
for the tracking of the backscattering direction, as it
predicts a peak when sin 8, = sin 8," + (sin 6, —
sin 8;). On the other hand, the term (6,* — 6,*) is
responsible for the symmetry of the speckle pattern
about the backscattering direction (i.e., 8," = 6,'), as it
predicts a peak when sin 8," = sin 8, — (sin 6, —
sin 6_‘).

4. Summary and Conclusions

We have studied the scattering of light resulting from
double passage through a deep random phase screen
for an 1ncoming Gaussian beam. Our analysis is for
a one-dimensional random phase screen but the
extension to two dimensions is straightforward.
Assuming that the complex amplitude of the speckle
formed on the mirror follows Gaussian statistics, and
that the speckle grain on the mirror is much smaller
than the mirror aperture, we have derived formulas
for the mean intensity of the backscattered light and
for the correlation of the intensities for different
directions of incidence and observation. Using the
factorization properties of the moments of a complex
Gaussian process, we have derived exact (within the
model) analytical expressions for these two quantities.
The formulas so obtained are long and difficult to
interpret but we have studied a variety of double-
passage configurations from the numerical evalua-
tion of these evrresgsions.

We have studied the backscattering enhancement
factor as well as the motion of the speckle pattern as
the angle of incidence is changed. We have found
that, in general, the rate of change in the position of
the speckle pattern is not the same as that of the
angle of incidence. In normal circumstances, the
speckle moves in the direction of the specular reflec-
tion at a rate slower than that of the incident beam
and decorrelates with an envelope described approxi-
mately by the shape of the backscattering enhance-
ment peak. Conditions have also been found under
which the speckle pattern is symmetric about the
backscattering direction and tracks the backscatter-
ing direction as the source is moved. The conditions
for the observation of this effect are, however, fairly
restrictive. The new geometry proposed, with a
spherical mirror, exhibits enhanced backscattering,
the symmetry of the speckle pattern, and the tracking
of the backscattering direction under less restrictive
conditions.

Appendix A

Apart from some constant factors, the amplitude
correlations appearing in Eqgs. (13) and (14) are of the
general form

A(x,8)A*(x’,0’)

ff [(“*‘:V—Z)]<exp{t<bx)}exp{—z¢ )

]
X exp| —ik(x;sin 8 — x, sin 8")|dx,dx,.

X exp{zd[( -x)?2 - (x
{Al)

The steepest-descent method!%? that we employed
for the calculation of these expressions basically
consists of making the approximation

(exp[id(x)lexp[—id(x’)])
jx —x' |2

gz

in the evaluation of the amplitude correlations given

=exp{-o¥l -plx-x')]} = exp(—02 ) (A2)

by Eq. (A.1). Using these results, we find that Eq.
(13) gives
o, 2'1':'34(12 1
Cl(ehoa;ei’es)=|K' k2 (A,AzR)"ZexP(X—B)’
(A3)
where
k21 o2 1 1 ;
X:ZE Ze? +2§2 A A 1'|€+Z*1] , (A4)
1 , o
B= 1A 2:8in?0, + 2,*sin0,’ —2§sm6,sme,»’
k%1 . o?
+-Z-X2 258in20, + 2,* sin?6,’ —2§sm9 8in B,
(A5)
, off{1 1)\
R=|Z| —E ZI+A_2 ’ (A6)
0,4
A=jz*- o’ (A7)
04
Az'—'lzzlz-gz’ (A8)
with
1 ( . a2 6’)
=2 12 i T T2 i
n A 1 8in & sin
1 : o
+ Xz 2,8in 0, — g sin9,’}, (A9)
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! *sin@,’ - ﬁ 0,
e—-Al z,* sin 8, 2 sin
1/ o?
A ‘zl sin 8, —Esmﬁ (A10)
2
F4 2y 4d? 1 k
Z=—1+Z; (‘—V‘Z-—l(—i {A1l)
1 ok
z"W,—z)'E”ﬁE' (A12)
1 o’ k
z; w2+€;+l§a (A13)

Similarly, it is found that Eq. (14) gives the follow-
ing result:

b ‘6'8"—K2‘"34d21 1 Y-V
2( nem ') s»_l | k2 !A'Dlzexp( )
(Al4)
where
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The expressions corresponding to the geometry
depicted in Fig. 7 are ottained by dropping the
imaginary terms inside parentheses in Eqs. (A1l and
{A21). Eguation 119, was obtained by dropping, in
addition, the imaginary terms in Eqs. {A12;and 1A131
and by puttingW, =W, = W.
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